Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

3,6-Bis(2-pyridyl)di-1,2,4-triazolo-[3,4-a:4 ${ }^{\prime}, 3^{\prime}$-c] phthalazine

Wen-Fu Chang, Yuh-Sheng Wen and Ling-Kang Liu*

Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
Correspondence e-mail: liuu@chem.sinica.edu.tw

Received 27 April 2004
Accepted 8 July 2004
Online 11 August 2004
The title compound, $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{8}$, (I), has been prepared by the reaction of 1,4-dihydrazinophthalazine and pyridine-2-carboxaldehyde, followed by an oxidative cyclization by treatment with bromine. In the solid state, the molecules of (I) are discrete, comprising a fused and twisted four-ring system with an overall helical appearance. The distance between the two intramolecular pyridyl N atoms is $3.075(2) \AA$, this short contact distance suggesting a $\pi-\pi$ interaction.

Comment

As a building block towards construction of polyheterocyclic ring systems of pharmaceutical interest, 1,4-dihydrazinophthalazine has attracted attention because it exhibits antihypertensive properties (Newkome \& Paudler, 1982; Amer \& Zimmer, 1983; Amer et al., 1987). Many of its metabolites or derivatives are important because of their antibacterial and antitumor activities (Reece, 1981; Schneider et al., 1988).

As a derivative of 1,4-dihydrazinophthalazine, the structure of the title compound, (I), is interesting because two triazole rings are fused to a parent phthalazine skeleton and two pendant pyridyl moieties are further connected to the triazole rings. If (I) is without a C_{6} ring, the remaining $4,4^{\prime}$-bis-1,2,4triazole skeleton, (II) (see scheme), is that of a group of well known spin-crossover coordination complexes (Garcia et al., 2001; Boillot et al., 2002; Enachescu et al., 2003).

A view of (I), with the atomic numbering scheme, is shown in Fig. 1, and selected geometric parameters are given in Table 1. Compound (I) is helical in that the two triazole rings are twisted in different directions, one up and one down, in relation to the similarly twisted plane of the fused four-ring system. The molecular symmetry of (I) in the crystalline state conforms to the chemical point group C2. The bond lengths are in accordance with anticipated values (Orpen et al., 1994).

The skeleton of (II) has two perpendicular triazole rings connected through an $\mathrm{N}-\mathrm{N}$ bond (Domiano, 1977). Table 2 gives the $\mathrm{C} 3-\mathrm{N} 4-\mathrm{N} 4^{\prime}-\mathrm{C} 3^{\prime}$ torsion angles for some $3,3^{\prime}-$ disubstituted-4,4'-bis-1,2,4-triazoles (Sadybakasov, Sheinker, Struchkov, Shklover, Postovskii \& Lundina, 1977; Carlsen et al., 1992). This torsion angle is not 90° in molecules with $3,3^{\prime}$ -

Me or Ph substituents; clearly, the torsion angle decreases with increasing size of the substituents. The nature of the driving force is believed to be electronically attractive rather than sterically repulsive, as illustrated by, for example, $\pi-\pi$ interactions (Sinnokrot et al., 2002) in the case of $3-\mathrm{Ph}, 3^{\prime}-\mathrm{Ph}$, (IIc).

When annealing with pyridazine or phthalazine, the constrained bis-1,2,4-triazole skeleton is expected to be planar. With substituents on the $3,3^{\prime}$-positions of the bis-1,2,4triazole moiety, the $\mathrm{C} 3-\mathrm{N} 4-\mathrm{N} 4^{\prime}-\mathrm{C} 3^{\prime}$ torsion angle deviates from 0° and increases with increasing steric bulkiness of the substituents $[$ e.g. (III $a)<(\mathrm{III} b)<(\mathrm{III} c)$], as shown in Table 2 (Sadybakasov, Sheinker, Shklover et al., 1977; Sadybakasov, Sheinker, Struchkov, Shklover, Timofeeva et al., 1977; Sadybakasov, Timofeeva et al., 1977). The $\mathrm{C} 3-\mathrm{N} 4-\mathrm{N} 4^{\prime}-\mathrm{C}^{\prime}$ torsion angle is a convenient parameter for the measurement of planarity. This torsion angle in (I), having two pyridyl groups, corresponds well to that of (IIIc), having two phenyl groups. The deviation from planarity is attributed to the bulkiness of the substituents.

However, the shortest distance between the two pyridyl groups in (I) is that between atoms N22 and N32, which are only 3.075 (2) \AA apart. As a pyridyl group is generally

Figure 1
A view of (I), with the labelling of the non-H atoms. Displacement ellipsoids are shown at the 30% probability level.

organic compounds

regarded as a dipole and the two pyridyl rings in (I) are positioned with the two negative N atoms in close proximity, the short $\mathrm{N} \cdots \mathrm{N}$ contact is considered part of the more important, attractive, $\pi-\pi$ interactions rather than the negative dipole interactions. As a reference point, the shortest distance between the two phenyl rings in (IIIc) is 3.246 (2) \AA, between the two ipso-C atoms. The distance between the two ortho-C atoms is 3.718 (2) \AA.

The $\mathrm{C}-\mathrm{N}$ bonds in bis-1,2,4-triazole are classified into localized single (e.g. $\mathrm{N} 1-\mathrm{C} 10$ and $\mathrm{N} 1-\mathrm{C} 13$) and double bonds (e.g. $\mathrm{N} 11=\mathrm{C} 10$ and $\mathrm{N} 12=\mathrm{C} 13$). The $\mathrm{N} 1-\mathrm{C} 13$ single bond is associated with a larger endo angle, $\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 21$, whereas the $\mathrm{N} 12=\mathrm{C} 13$ double bond has a smaller exo angle, $\mathrm{N} 12=\mathrm{C} 13-\mathrm{C} 21$.

The intermolecular short contacts are mostly due to $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ or $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions. Also notable are the $\pi-\pi$ interactions between two inversion-symmetry-related molecules $[$ e.g. $\mathrm{C} 10 A \cdots \mathrm{C} 10 B=3.362(2) \AA, \mathrm{C} 10 A \cdots \mathrm{~N} 11 B=$ 3.327 (2) \AA and $\mathrm{N} 11 A \cdots \mathrm{C} 10 B=3.327$ (2) $\AA \mathrm{A}]$.

Experimental

Compound (I) was prepared by the reaction of 1,4-dihydrazinophthalazine with pyridine-2-carboxaldehyde, followed by an oxidative cyclization with bromine in the presence of acetic acid/ sodium acetate buffer. The preparative method employed is an extension of a literature procedure (Pollak \& Tisler, 1966). Single crystals suitable for X-ray structure determination were obtained from dichloromethane/hexane by slow evaporation.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{8}$
$M_{r}=364.38$
Monoclinic, $P 2_{1} / n$
$a=8.1968$ (12) A
$b=12.390$ (2) \AA
$c=16.409$ (5) \AA
$\beta=91.23$ (2) ${ }^{\circ}$
$V=1666.1(6) \AA^{3}$
$Z=4$
$D_{x}=1.453 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
Non-profiled $\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968) $T_{\text {min }}=0.969, T_{\text {max }}=0.981$
3147 measured reflections
2929 independent reflections
2101 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.095$
$S=1.02$
2929 reflections
254 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=5.8-18.5^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, light brown } \\
& 0.4 \times 0.3 \times 0.2 \mathrm{~mm} \\
& \\
& \\
& \\
& R_{\text {int }}=0.018 \\
& \theta_{\text {max }}=25.0^{\circ} \\
& h=0 \rightarrow 9 \\
& k=0 \rightarrow 14 \\
& l=-19 \rightarrow 19 \\
& 3 \text { standard reflections } \\
& \text { frequency: } 60 \text { min } \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.04 P)^{2}\right. \\
\\
\quad+0.3394 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}
\end{array} .
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.0127 (13)

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

N1-C10	$1.376(2)$	N22-C23	$1.333(2)$
N1-C13	$1.380(2)$	N22-C21	$1.339(2)$
N1-N2	$1.3857(17)$	N32-C31	$1.337(2)$
N2-C3	$1.376(2)$	N32-C33	$1.339(2)$
N2-C16	$1.382(2)$	C3-C4	$1.446(2)$
N11-C10	$1.312(2)$	C4-C9	$1.400(2)$
N11-N12	$1.385(2)$	C9-C10	$1.446(2)$
N12-C13	$1.314(2)$	C13-C21	$1.461(2)$
N14-C3	$1.308(2)$	C16-C31	$1.465(2)$
N14-N15	$1.377(2)$	N22-N32	$3.075(2)$
N15-C16	$1.313(2)$		
C10-N1-C13	$106.46(13)$	N2-C3-C4	$121.22(14)$
C10-N1-N2	$119.52(13)$	C9-C4-C3	$117.75(15)$
C13-N1-N2	$133.95(14)$	C4-C9-C10	$117.57(15)$
C3-N2-C16	$106.07(13)$	N11-C10-N1	$109.21(15)$
C3-N2-N1	$118.75(13)$	N11-C10-C9	$128.61(16)$
C16-N2-N1	$135.17(13)$	N1-C10-C9	$120.93(14)$
C10-N11-N12	$107.22(14)$	N12-C13-N1	$107.66(15)$
C13-N12-N11	$109.27(14)$	N12-C13-C21	$123.55(15)$
C3-N14-N15	$107.13(14)$	N1-C13-C21	$128.13(14)$
C16-N15-N14	$109.65(14)$	N15-C16-N2	$107.49(15)$
N14-C3-N2	$109.51(15)$	N15-C16-C31	$122.08(15)$
N14-C3-C4	$128.35(16)$	N2-C16-C31	$130.21(14)$
C10-N1-N2-C3	$-22.1(2)$	N1-C13-C21-N22	$-28.8(3)$
C10-N1-N2-C16	$156.20(17)$	N1-C13-C21-C26	$155.25(17)$
C13-N1-N2-C3	$154.54(17)$	N12-C13-C21-N22	$140.68(17)$
C13-N1-N2-C16	$-27.2(3)$	N12-C13-C21-C26	$-35.3(3)$
N2-N1-C13-N12	$178.71(15)$	N2-C16-C31-N32	$-18.1(3)$
N2-N1-C13-C21	$-10.5(3)$	N2-C16-C31-C36	$165.71(17)$
N1-N2-C16-N15	$177.71(15)$	N15-C16-C31-N32	$155.82(16)$
N1-N2-C16-C31	$-7.7(3)$	N15-C16-C31-C36	$-20.4(3)$

Table 2
The C3-N4-N4'-C3' torsion angle in (I), (II) and (III).

Compound	Torsion angle $\left({ }^{\circ}\right)$	Substituents on $R 1$ and $R 2$
$(\mathrm{I}) \dagger$	$27.2(3)$	Pyridine, pyridine
$(\mathrm{II}) \ddagger$	$91.9(5)$	H, H
(II $a) \S$	$84.1(2)$	Me, Me
(II $b)$	$74.3(5)$	Me, Ph
$(\mathrm{II} c) \S$	$64.1(2)$	Ph, Ph
(III $a) \dagger \dagger$	$7.8(5)$	Me, Me
(III $b) \ddagger \ddagger$	$20.7(5)$	Me, Ph
$(\mathrm{III} c) \S \S$	$27.5(5)$	Ph, Ph

\dagger This work. \ddagger Domiano (1977). § Carlsen et al. (1992). © Sadybakasov, Sheinker, Struchkov, Shklover, Postovskii \& Lundina (1977). †† Sadybakasov, Sheinker, Shklover et al. (1977). 扞 Sadybakasov, Sheinker, Struchkov, Shklover, Timofeeva et al. (1977). §§ Sadybakasov, Timofeeva et al. (1977).

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are indebted to Academia Sinica and the National Science Council, Taiwan, for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TR1093). Services for accessing these data are described at the back of the journal.

H atoms bonded to C atoms were treated as riding atoms $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA$).

References

Amer, A., Rashed, N., Rahman, M. M. A. \& Zimmer, H. (1987). Heterocycles, 26, 1277-1282.
Amer, A. \& Zimmer, H. (1983). J. Heterocycl. Chem. 20, 1231-1238.
Boillot, M.-L., Zarembowitch, J., Itié, J.-P., Polian, A., Bourdet, E. \& Haasnoot, J. G. (2002). New J. Chem. pp. 313-322.

Carlsen, P. H. J., Iversen, E. H., Samuelsen, E. J., Helgesson, G. \& Jagner, S. (1992). Acta Chem. Scand. 46, 200-204.

Domiano, P. (1977). Cryst. Struct. Commun. 6, 503-506.
Enachescu, C., Linares, J., Codjovi, E., Boukheddaden, K. \& Varret, F. (2003). J. Optoelectr. Adv. Mater. 5, 261-266.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Garcia, Y., Ksenofontov, V. \& Gutlich, P. (2001). C. R. Acad. Sci. Ser. IIc Chim. 4, 227-233.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Newkome, G. R. \& Paudler, W. W. (1982). In Contemporary Heterocyclic Chemistry: Syntheses, Reactions and Application. New York: Wiley.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1994). Structure Correlations, Vol. 2, edited by H.-B. Bürgi \& J. D. Dunitz, Appendix A. Weinheim, Germany: VCH Publishers.
Pollak, A. \& Tisler, M. (1966). Tetrahedron, 22, 2073-2079.
Reece, P. A. (1981). Med. Res. Rev. 1, 73-96.
Sadybakasov, B. K., Sheinker, Yu. N., Shklover, V. E., Struchkov, Yu. T., Lundina, I. B. \& Postovskii, I. Ya. (1977). Zh. Strukt. Khim. 18, 112.
Sadybakasov, B. K., Sheinker, Yu. N., Struchkov, Yu. T., Shklover, V. E., Postovskii, I. Ya. \& Lundina, I. B. (1977). Zh. Strukt. Khim. 18, 1095.
Sadybakasov, B. K., Sheinker, Yu. N., Struchkov, Yu. T., Shklover, V. E., Timofeeva, T. V., Postovskii, I. Ya. \& Lundina, I. B. (1977). Zh. Strukt. Khim. 18, 873.
Sadybakasov, B. K., Timofeeva, T. V., Shklover, V. E., Struchkov, Yu. T., Postovskii, I. Ya., Lundina, I. B. \& Sheinker, Yu. N. (1977). Zh. Strukt. Khim. 18, 756.
Schneider, T., Siegmund, W., Zschiesche, M., Kallwellis, R. \& Scherber, A. (1988). Pharmazie, 43, 33-36.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sinnokrot, M. O., Valeev, E. \& Sherrill, C. D. (2002). J. Am. Chem. Soc. 124, 10887-10893.

